Sketching Graphs of Exponential Functions

Answer

You can check all your graphs and intercepts with your calculator.

- 1. $y = 4e^{3x} 8$
 - a. Sketch a graph.
 - b. The domain is all real numbers, the range is y > -8 since the graph has been shifted down 8 units.
 - c. The horizontal asymptote is y = -8.

d. The y-intercept is (0, -8). The x-intercept is
$$\left(\frac{\ln(2)}{3},0\right)$$

2. $y = 2 - 3^{-x}$

- a. Sketch a graph.
- b. The domain is all real numbers; the range is y < 2.
- c. The horizontal asymptote is The horizontal asymptote is y = 2.
- d. The y-intercept is (0, 1). The x-intercept is $-\log_3(2), 0$ or $\left(-\frac{\ln(2)}{\ln(3)}, 0\right)$
- 3. Rewrite the equation as $e^x = xe^xe^2$ so that $e^x (1 xe^2) = 0$. The only *x*-intercept is $x = 1/e^2$
- 4. Solve $0 = 2x^2e^x x^3e^{x-1}$ by factoring: $0 = x^2e^x \quad 2 xe^{-1}$. There are two *x*-intercepts: x = 0 and x = 2e. To decide whether or not the graph has a high point between these intercepts consider the local behavior of the function near these intercepts.

When x is a small positive number $y = x^2 e^x 2 - x e^{-1}$ is positive. When x is a little smaller than 2*e* the *y*-values are also positive. But if the graph is positive between these intercepts it must increase to some maximum value and then decrease to zero.

- The exponential function decreases everywhere while the cubic function increases. The two curves are separated at x = 0 and so must cross exactly once somewhere between x = 0 and x = 1.
- 6. The exponential function $y = e^{-x}$ is positive and decreasing. The function $y = -e^{-x}$ has been reflected across the *x*-axis and so is negative and increasing. Therefore, the function $y = 1 e^{-x}$ must intersect $y = e^{-x}$ exactly once.