Solving Linear Inequalities in One Variable

A linear inequality looks like a linear equation, but instead of an equals sign it has a symbol of inequality: greater than or equal (\ge) , greater than (>), less than or equal (\le) , or less than (<).

Solving an inequality is similar to solving an equation. You can:

- add the same quantity from each side of the inequality
- subtract the same quantity from each side of the inequality
- multiply both sides of an inequality by the same positive number
- divide both sides of an inequality by the same positive number

If you multiply or divide an inequality by a negative number the inequality symbol reverses: greater than becomes less than and vice-versa.

Example: Solve 2x - 5 > 13

Solution: Add 5 to each side to get 2x > 18

Divide both sides by 2 to get x > 9,

You can **graph** the an inequality on a number line by shading in all values of *x* that make the inequality true.

Example: Graph the inequality x > 5

Solution: The solution appears below. Notice that we place an open circle at x = 5 to show that this value is not part of the solution.

Problems

1. Solve each of the following inequalities.

a.
$$3x-5>15-2x$$

b.
$$2x-3(1-2x) \le 31$$
 c. $x \ge 1-x$

c.
$$x \ge 1 - x$$

d.
$$2x < 3 - 4x$$

d.
$$2x < 3 - 4x$$
 e. $1.5 - 0.25x \ge 0.5x + 3.5$ **f.** $x \ge 2 + 3x$

f.
$$x \ge 2 + 3x$$

g.
$$-3x < 2$$

h.
$$2.3 \ge -0.2x$$

i.
$$-2x < 1 - x$$

Graph the solution set to each inequality. 2.

a.
$$x \ge 2$$

b.
$$2x \le x - 3$$

c.
$$3x-5>-2$$

c.
$$3x-5>-2$$
 d. $x(x-5) < x(x-4)+2$