Simplifying Algebraic Fractions by Factoring

Answers

1. $\frac{5\left(x^{2}-6\right)}{4\left(x^{2}-6\right)}=\frac{5}{4}$
2. $(2 y) /\left(3 x^{2}\right)$
3. $\frac{x^{2}-9}{x+3}=\frac{(x-3)(x+3)}{x+3}=x-3$
4. $\frac{x-15}{x-5}$ is already reduced and cannot be simplified further.
5. $\frac{x^{2}-2 x}{x-2}=\frac{x(x-2)}{x-2}=x$
6. Multiply the numerator and denominator by x to get:
$\frac{\frac{16}{x}-2 x^{2}}{24 x^{4}-2 x^{3}} \times \frac{x}{x}=\frac{\left(\frac{16}{x}\right) x-\left(2 x^{2}\right) x}{\left(24 x^{4}\right) x-\left(2 x^{3}\right) x}=\frac{16-2 x^{3}}{24 x^{5}-2 x^{4}}$.
factor of 2 , so this can be reduced to $\frac{2\left(8-x^{3}\right)}{2\left(12 x^{5}-x^{4}\right)}=\frac{8-x^{3}}{12 x^{5}-x^{4}}$.
7. $\frac{x^{2}-3 x-10}{x^{2}+4 x-45}=\frac{(x-5)(x+2)}{(x-5)(x+9)}=\frac{x+2}{x+9}$
8. $\frac{6 x^{2}-x}{x}=\frac{6 x^{2}}{x}-\frac{x}{x}=6 x-1$
9. Multiply the numerator and the denominator by $1-x$ to get:

$$
\begin{aligned}
& \frac{\frac{5}{1-x}+2 x}{10 x+\frac{4 x^{2}}{1-x}} \times \frac{1-x}{1-x}=\frac{\left(\frac{5}{1-x}\right)(1-x)+(2 x)(1-x)}{(10 x)(1-x)+\left(\frac{4 x^{2}}{1-x}\right)(1-x)}=\frac{5+2 x-2 x^{2}}{10 x-10 x^{2}+4 x^{2}} . \\
& \frac{5+2 x-2 x^{2}}{10 x-10 x^{2}+4 x^{2}}=\frac{5+2 x-2 x^{2}}{10 x-6 x^{2}}
\end{aligned} .
$$

10. $\frac{6-2 x^{2}}{6-2 x}=\frac{2\left(3-x^{2}\right)}{2(3-x)}=\frac{3-x^{2}}{3-x}$ and this is simplified as much as possible.
