Sketching Graphs of Sinusoidal Functions

Problems

For each function in problems 1-4 use your calculator to check your graph.

1. The domain is all reals, the range is $-2 \leq y \leq 4$, the period is 1 .
2. The domain is all reals, the range is $2 \leq y \leq 6$, the period is $2 \pi / 3$.
3. The domain is all reals except for $x=\frac{\pi}{2}+n \pi$ for any integer n . The range is all reals, the period is π.
4. The domain is all reals except for $x=1+4 n$ for any integer value of n. The range is $|y| \geq \frac{1}{4}$ and the period is 4 .
5. The equation is equivalent to $\sin (x)=0$, so the solutions are $x=n \pi$ for any integer n.
6. Rewrite the equation as $\frac{\sin (2 x)}{\cos (2 x)}=1$ to see that the problem is equivalent to $\tan (2 \mathrm{x})=1$. The solutions are values of x for which $2 x=\frac{\pi}{4}+n \pi$ or $x=\frac{\pi}{8}+\frac{n \pi}{2}$. When $\mathrm{n}=0,1,2$, and 3 we get solutions in the desired domain: $x=\frac{\pi}{8}, \frac{5 \pi}{8}, \frac{9 \pi}{8}, \frac{13 \pi}{8}$.
7. Rewrite the equation in factored form as $\cos (x)(\cos (x)-1)=0$. The solutions are $x=0, \frac{\pi}{2}, \frac{3 \pi}{2}, 2 \pi$.
8. a) Since $1 / 3$ is in the range of $y=\sin (x)$ there are infinitely many intersections with $y=1 / 3$.
b) Since $y=x$ intersects the graph once so does the steeper line $y=2 x$.
c) Since $y=x-2 \pi$ is parallel to $y=x$ it also intersects $\sin (x)$ just once at $(2 \pi, 0)$.
d) Since 1.2 is not in the range of $y=\sin (x)$ the horizontal line $y=1.2$ does not intersect the graph at all.
e) $x=1 / 3$ intersects the graph just once since $y=\sin (x)$ is a function.
f) Since $y=x / 2$ obviously intersects the sine wave at the origin. The point $(\pi, \pi / 2)$ lies on the line and since $\pi / 2>1$ the line must intersect the sine graph somewhere between $x=0$ and x $=\pi$. There is a corresponding intersection in the fourth quadrant $\operatorname{since} \sin (x)$ is symmetrical through the origin. Therefore, this line intersects $y=\sin (x)$ exactly three times.
