Sketching Graphs of Logarithmic Functions

Summary

All logarithm functions $y=\log _{3}(x)$, whatever the base $b>1$, have the same shape as $y=\ln (x)$.

The domain of log functions are all positive reals; the range is all reals.

The y-axis is a vertical axis for logarithm functions.

The x-intercept for logarithm functions is $(1,0)$ because $\log _{b}(1)=0$.

Since $\log _{3}(a x)=\log _{3}(a)+\log _{3}(x)$ the graph of $y=\log _{3}(a x)$ can be thought of as both a horizontal stretching (or compression) of the basic logarithm graph by a factor of a, or as a vertical shift of the same graph by $\log _{3}(a)$.

Problems

Do these problems without a calculator. for each function
a) Sketch a graph
b) Identify its domain and range
c) Identify the equation of its asymptote(s)
d) Identify the coordinates of its intercept(s)

1. $y=3 \ln (4 x)+1$
2. $y=\ln (x-4)-1$
3. Find all solutions to the equation $x \ln (3 x)=x$
4. Find the x-intercept of the graph of $y=(9+x) \ln (6-x)$. Does the graph have a high point or a low point between the intercepts? Explain.
5. Does the graph of $y=8-2 x$ intersect the graph of $y=\ln (x)$? Find as small an interval of x-values as you can which you are certain must include a point of intersection. Explain.
6. How many times does the graph of $y=\ln (2 x)$ intersect the graph of $y=4-\ln (-x)$. Explain.
