Sketching Graphs of Logarithmic Functions

Summary

All logarithm functions $y = 1 \circ g_{\delta}(x)$, whatever the base b > 1, have the same shape as $y = \ln(x)$.

The domain of log functions are all positive reals; the range is all reals.

The y-axis is a vertical axis for logarithm functions.

The *x*-intercept for logarithm functions is (1, 0) because $\log_{\delta}(1) = 0$.

Since $\log_{\delta}(ax) = \log_{\delta}(a) + \log_{\delta}(x)$ the graph of $y = \log_{\delta}(ax)$ can be thought of as both a horizontal stretching (or compression) of the basic logarithm graph by a factor of *a*, or as a vertical shift of the same graph by $\log_{\delta}(a)$.

Problems

Do these problems without a calculator. for each function

- a) Sketch a graph
- b) Identify its domain and range
- c) Identify the equation of its asymptote(s)
- d) Identify the coordinates of its intercept(s)
- 1. $y = 3\ln(4x) + 1$
- 2. $y = \ln(x-4) 1$
- 3. Find all solutions to the equation $x \ln(3x) = x$
- 4. Find the x-intercept of the graph of $y = (9 + x) \ln(6 x)$. Does the graph have a high point or a low point between the intercepts? Explain.
- 5. Does the graph of y = 8 2x intersect the graph of $y = \ln(x)$? Find as small an interval of x-values as you can which you are certain must include a point of intersection. Explain.

6. How many times does the graph of $y = \ln(2x)$ intersect the graph of $y = 4 - \ln(-x)$. Explain.