Finding Amplitude, Period and Midline of a Sinusoidal Function

Quick Review	
Amplitude is half the height of	Example:
the wave. The amplitude of the	$f(x)=4 \cos (3 x)+25$
basic sinusoidal function is 1,	$g(x)=4 \sin (3 x)+25$
so the amplitude is equivalent	The amplitude for both
to the vertical stretch of the	
of these functions is 4.	
function.	Example:
A function is periodic if its	$f(x)=4 \cos (3 x)+25$
values repeat at regular	
intervals: $f(x+c)=f(x)$. The	$g(x)=4 \sin (3 x)+25$
period of a sinusoidal function	The period for both of
is the smallest interval c for	these functions is $\frac{2 \pi}{3}$.
which the graph completes one	
full cycle. The period of the	
basic sinusoidal functions is	
2π.	Example:
The midline of a sinusoidal	
function is the horizontal line	$f(x)=4 \cos (3 x)+25$
midway between the function's	$g(x)=4 \sin (3 x)+25$
maximum and minimum	The midline for both of
values. It is equivalent to the	these functions is $y=25$.
vertical shift. The midline of	
the basic functions is $y=0$.	

Problems

Find the amplitude, period and midline of each of the following functions.

1. $f(x)=\cos \left(\frac{2 x}{3}\right)$
2. $f(x)=5 \sin (7 x)-13$
3. $f(x)=5-2 \cos (x)$
4. $g(x)=\frac{4}{5} \sin (2 x)+1$
5. $\quad h(x)=\frac{1}{3} \sin \left(\frac{x}{3}\right)+18$
6. $f(x)=12+\cos \left(\frac{2 \pi}{3} x\right)$
7. $g(x)=3 \cos (x)$
8. $h(x)=3 \sin \left(\frac{\pi}{3} x\right)-4$
9. $f(x)=\sin (x)-\pi$
10. $f(x)=\pi \cos (\pi x)$
