Solving Quadratic Equations by Taking Square Roots

Quick Review	
when looking for the square	Example:
<i>root</i> of a number <i>n</i> , you are	Let $n = 4$
finding a number such that the	$\sqrt{n} = \sqrt{4} = \pm 2$ because
product of the number times	$2 \cdot 2 = 4$ and
itself gives you <i>n.</i> Note: You	$(-2) \cdot (-2) = 4$
cannot take the square root of	
a negative number.	
A quadratic equation that can	Example:
be solved using square roots is	1) $x^2 - 9 = 0$
an equation that can be written	2) $3y^2 + 5 = 53$
in the form $ax^2 + c = 0$.	
To solve a quadratic equation	Example:
<i>by taking square roots,</i> isolate	1) $x^2 - 9 = 0$
the squared term first, then	$x^2 = 9$ (add 9 to both sides)
take the square root of both	$\sqrt{x^2} = \sqrt{9}$; x = 3 and x = -3
sides of the equation to solve.	2) $3y^2 + 5 = 53$
	$3y^2 = 48$ (subtract 5)
	$y^2 = 16$ (divide by 3)
	y = 4 and $y = -4$

Problems

Solve each of the following quadratic equations by taking square roots.

- 1. $x^2 25 = 0$ 2. $2x^2 50 = 0$
- 3. $y^2 + 7 = 16$ 4. $4y^2 5 = 139$
- 5. $z^2 + 7 = 3$ 6. $8 2y^2 = 0$