Solving Quadratic Equations by Taking Square Roots

Quick Review	
When looking for the square	Example:
root of a number n, you are	Let $n=4$
finding a number such that the	$\sqrt{n}=\sqrt{4}= \pm 2$ because
product of the number times	$2 \cdot 2=4$ and
itself gives you n. Note: You	$(-2) \cdot(-2)=4$
cannot take the square root of	
a negative number.	
A quadratic equation that can	Example:
be solved using square roots is	$1) x^{2}-9=0$
an equation that can be written	$2) 3 y^{2}+5=53$
in the form ax $+c=0$.	
To solve a quadratic equation	Example:
by taking square roots, isolate	1) $x^{2}-9=0$
the squared term first, then	$x^{2}=9$ (add 9 to both sides)
take the square root of both	$\sqrt{x^{2}}=\sqrt{9} ; x=3$ and $x=-3$
sides of the equation to solve.	2 2 $3 y^{2}+5=53$
	$3 y^{2}=48$ (subtract 5)
	$y^{2}=16$ (divide by 3)
$y=4$ and $y=-4$	

Problems

Solve each of the following quadratic equations by taking square roots.

1. $x^{2}-25=0$
2. $2 x^{2}-50=0$
3. $y^{2}+7=16$
4. $4 y^{2}-5=139$
5. $z^{2}+7=3$
6. $8-2 y^{2}=0$
