Solving Quadratic Equations

Quick Review	
A quadratic equation is any	Examples:
equation that can be written in	1) $x^2 - 5x + 6 = 0$
the form $ax^2 + bx + c = 0$	2) $2y^2 + 11 = 10y$
To solve a quadratic equation	Example:
that has a "middle" term, the bx	1) $x^2 - 5x + 6 = 0$ (this is
part of the equation, first set	already equal to zero!)
the equation equal to zero.	2) $2y^2 + 11 = 10y$
A quadratic equation can	Example:
always be solved using the	1) by factoring $r^2 - 5r + 6 = 0$
quaaratic formula:	$\begin{array}{c} x -3x + 0 = 0 \\ \end{array}$
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{ac}$, and can	(x-3)(x-2) = 0
2a	(x-3) = 0, x = 3
sometimes be solved by	(x-2) = 0, x = 2
factoring.	2) using quadratic formula
	$2y^2 - 10y + 11 = 0$
	a = 2, b = -10, c = 11
	$y = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(2)(11)}}{2(2)}$
	$y = \frac{10 \pm \sqrt{100 - 88}}{4}$
	$y = \frac{10 \pm \sqrt{12}}{4}$
	$y = \frac{10 + \sqrt{12}}{4}, y = \frac{10 - \sqrt{12}}{4}$

Problems: Solve each of the following quadratic equations.

- 1. $x^2 3x + 2 = 0$ 2. $2x^2 + 5x = 20$
- 3. $y^2 + 7y = 18$ 4. $4y^2 52 = 5y$
- 5. $z^2 + 13 = 3z$ 6. $9 + y^2 = -6y$