The Slope of a Line - Answers

Problems. Find the slope of each line.

$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(0,0)$
$\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(3,3)$
$\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-0}{3-0}=\frac{3}{3}=\mathbf{1}$
3.

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)=(1,1) \\
& \left(x_{2}, y_{2}\right)=(-1,-2) \\
& \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-1}{-1-1}=\frac{-3}{-2}=\frac{\mathbf{3}}{2}
\end{aligned}
$$

$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(0,8)$
$\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(12,0)$
$\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{0-8}{12-0}=\frac{-8}{12}=-\frac{\mathbf{2}}{\mathbf{3}}$
4.

$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(-7,-2)$
$\left(\mathrm{x}_{2} \mathrm{y}_{2}\right)=(-2,-5)$
$\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(-2,-5)$
$\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-5-(-2)}{-2-(-7)}=\frac{-3}{5}=-\frac{\mathbf{3}}{\mathbf{5}}$

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)=(6,5) \\
& \left(x_{2}, y_{2}\right)=(6,-2) \\
& \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-5}{6-6}=\frac{-7}{0}
\end{aligned}
$$

Undefined

$$
\begin{aligned}
& \left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(-5,7) \\
& \left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(10,7) \\
& \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{7-7}{10-(-5)}=\frac{0}{15}=\mathbf{0}
\end{aligned}
$$

(you cannot have a denom. of 0)
(0 divided by anything is 0)
7. Find the slope of a line parallel to the line in problem 2.

Slope of line in problem 2: $\quad-\frac{2}{3}$
Slope of a line parallel to the line in problem 2: $-\frac{\mathbf{2}}{\mathbf{3}}$
8. Find the slope of a line perpendicular to the line in problem 2.

Slope of line in problem 2: $-\frac{2}{3}$
Slope of a line perpendicular to the line in problem 2: $\frac{\mathbf{3}}{\mathbf{2}}$

