Solving Inequalities

1. $y=4 x^{5}-6 x^{4}-3 x^{2}+3>x^{3}+2 x+2$ when $-0.628<x<0.314$ and $x>1.895$
2. $\ln (\mathrm{x})>\sin (\mathrm{x})$ when $x>2.219$
3. $\frac{x^{3}-2 x}{x^{3}-3 x}>0$ on the intervals $(-\infty,-1.732) \cup(-1.414,1.414) \cup(1.732, \infty)$.
4. To solve $x^{2}+5 x-1<3 x^{2}+2 x$ rewrite the inequality as $0<2 x^{2}-3 x+1=(2 x-1)(x-1)$. The quadratic is negative between its x-intercepts so the solution is $x<1 / 2$ and $x>1$.
5. To solve $x^{3}-4 x^{2}+x+6 \geq 0$ use the Factor Theorem to factor the cubic into $(x+1)(x-3)(x-2) \geq 0$. The solution are the intervals $[1,2] \cup[3, \infty)$.
6. To solve the inequality $\frac{x^{3}-2 x}{x^{3}-3 x}>0$ factor into $\frac{x\left(x^{2}-2\right)}{x\left(x^{2}-3\right)}>0$. The common factor of x in the numerator and denominator corresponds to a hole on the graph and does not affect the intervals where this rational function is positive and negative. The graph of this fraction has vertical asymptotes at $x= \pm \sqrt{3}$ and zeros at $x= \pm \sqrt{2}$. Since the long-range behavior is positive, the fraction is positive on the intervals $(-\infty,-\sqrt{3}) \cup(-\sqrt{2}, \sqrt{2}) \cup(\sqrt{3}, \infty)$.
